AI/ML Ecosystem Roadmap
Complete Guide to Machine Learning & AI Technologies
🗃️ Data & Preprocessing
Data Sources:
- Kaggle Datasets
- UCI ML Repository
- Google Dataset Search
- AWS Open Data
Processing Tools:
Pandas
NumPy
Dask
Apache Spark
Polars
Vaex
CuDF
Modin
Data Quality:
- Great Expectations
- Evidently AI
- Deepchecks
🔧 ML Frameworks
Deep Learning:
PyTorch
TensorFlow
Keras
JAX
MXNet
PaddlePaddle
Traditional ML:
Scikit-learn
XGBoost
LightGBM
CatBoost
Random Forest
SVM
Specialized:
- Hugging Face (NLP/Vision)
- SpaCy (NLP)
- OpenCV (Computer Vision)
- NetworkX (Graph ML)
☁️ Cloud & Compute
Major Providers:
AWS SageMaker
Google AI Platform
Azure ML
IBM Watson
Specialized Platforms:
- Databricks
- Snowflake
- Paperspace
- Colab/Kaggle
Hardware:
- NVIDIA GPUs (A100, H100)
- Google TPUs
- AWS Inferentia
- Apple Silicon
🧠 Model Development
Experiment Tracking:
MLflow
Weights & Biases
Neptune
ClearML
AutoML:
- AutoKeras
- H2O.ai
- Google AutoML
- Auto-sklearn
Model Architecture:
- Transformer Models
- Convolutional Networks
- Recurrent Networks
- Graph Neural Networks
🚀 MLOps & Deployment
Orchestration:
Kubeflow
Apache Airflow
Prefect
Metaflow
Model Serving:
- TensorFlow Serving
- TorchServe
- MLflow Models
- Seldon Core
Containerization:
- Docker
- Kubernetes
- Helm Charts
- Istio Service Mesh
📊 Monitoring & Observability
Model Monitoring:
- Evidently AI
- Arize AI
- Fiddler
- WhyLabs
Performance Metrics:
- Data Drift Detection
- Model Bias Analysis
- Latency Monitoring
- A/B Testing
Visualization:
Grafana
Prometheus
Tableau
Power BI
🔄 End-to-End ML Pipeline
Data Collection
Data Processing
Feature Engineering
Model Training
Model Validation
Deployment
Monitoring
🏆 Popular Models & Architectures
GPT-4
BERT
ResNet
YOLO
Transformer
U-Net
GAN
VAE
LSTM
XGBoost
Random Forest
SVM
🌐 AI/ML Ecosystem Overview
Data Sources & Storage
Compute & Infrastructure
Models & Algorithms
Development Tools
Deployment & Serving
Monitoring & Governance
📚 Essential Learning Resources
Courses:
• Andrew Ng’s ML Course
• Deep Learning Specialization
• Fast.ai Practical Deep Learning
• Andrew Ng’s ML Course
• Deep Learning Specialization
• Fast.ai Practical Deep Learning
Books:
• Hands-On ML (Géron)
• Deep Learning (Goodfellow)
• Pattern Recognition (Bishop)
• Hands-On ML (Géron)
• Deep Learning (Goodfellow)
• Pattern Recognition (Bishop)
Platforms:
• Kaggle Learn
• Coursera AI Courses
• edX MIT/Stanford ML
• Kaggle Learn
• Coursera AI Courses
• edX MIT/Stanford ML
Communities:
• Papers With Code
• ML Twitter
• Reddit r/MachineLearning
• Papers With Code
• ML Twitter
• Reddit r/MachineLearning