AI/ML Ecosystem Roadmap: Complete Guide to Machine Learning & AI Technologies

AI/ML Ecosystem

AI/ML Ecosystem Roadmap

Complete Guide to Machine Learning & AI Technologies

🗃️ Data & Preprocessing

Data Sources:

  • Kaggle Datasets
  • UCI ML Repository
  • Google Dataset Search
  • AWS Open Data

Processing Tools:

Pandas
NumPy
Dask
Apache Spark
Polars
Vaex
CuDF
Modin

Data Quality:

  • Great Expectations
  • Evidently AI
  • Deepchecks

🔧 ML Frameworks

Deep Learning:

PyTorch
TensorFlow
Keras
JAX
MXNet
PaddlePaddle

Traditional ML:

Scikit-learn
XGBoost
LightGBM
CatBoost
Random Forest
SVM

Specialized:

  • Hugging Face (NLP/Vision)
  • SpaCy (NLP)
  • OpenCV (Computer Vision)
  • NetworkX (Graph ML)

☁️ Cloud & Compute

Major Providers:

AWS SageMaker
Google AI Platform
Azure ML
IBM Watson

Specialized Platforms:

  • Databricks
  • Snowflake
  • Paperspace
  • Colab/Kaggle

Hardware:

  • NVIDIA GPUs (A100, H100)
  • Google TPUs
  • AWS Inferentia
  • Apple Silicon

🧠 Model Development

Experiment Tracking:

MLflow
Weights & Biases
Neptune
ClearML

AutoML:

  • AutoKeras
  • H2O.ai
  • Google AutoML
  • Auto-sklearn

Model Architecture:

  • Transformer Models
  • Convolutional Networks
  • Recurrent Networks
  • Graph Neural Networks

🚀 MLOps & Deployment

Orchestration:

Kubeflow
Apache Airflow
Prefect
Metaflow

Model Serving:

  • TensorFlow Serving
  • TorchServe
  • MLflow Models
  • Seldon Core

Containerization:

  • Docker
  • Kubernetes
  • Helm Charts
  • Istio Service Mesh

📊 Monitoring & Observability

Model Monitoring:

  • Evidently AI
  • Arize AI
  • Fiddler
  • WhyLabs

Performance Metrics:

  • Data Drift Detection
  • Model Bias Analysis
  • Latency Monitoring
  • A/B Testing

Visualization:

Grafana
Prometheus
Tableau
Power BI

🔄 End-to-End ML Pipeline

Data Collection
Data Processing
Feature Engineering
Model Training
Model Validation
Deployment
Monitoring

🏆 Popular Models & Architectures

GPT-4
BERT
ResNet
YOLO
Transformer
U-Net
GAN
VAE
LSTM
XGBoost
Random Forest
SVM

🌐 AI/ML Ecosystem Overview

Data Sources & Storage
Compute & Infrastructure
Models & Algorithms
Development Tools
Deployment & Serving
Monitoring & Governance

📚 Essential Learning Resources

Courses:
• Andrew Ng’s ML Course
• Deep Learning Specialization
• Fast.ai Practical Deep Learning
Books:
• Hands-On ML (Géron)
• Deep Learning (Goodfellow)
• Pattern Recognition (Bishop)
Platforms:
• Kaggle Learn
• Coursera AI Courses
• edX MIT/Stanford ML
Communities:
• Papers With Code
• ML Twitter
• Reddit r/MachineLearning

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *